5 research outputs found

    Recursive receivers for diversity channels with correlated flat fading

    Get PDF
    Copyright © 2003 IEEEThis paper addresses the design and performance of time-recursive receivers for diversity based communication systems with flat Rayleigh or Ricean fading. The paper introduces a general state-space model for such systems, where there is temporal correlation in the channel gain. Such an approach encompasses a wide range of diversity systems such as spatial diversity, frequency diversity, and code diversity systems which are used in practice. The paper describes a number of noncoherent receiver structures derived from both sequence and a posteriori probability-based cost functions and compares their performance using an orthogonal frequency-division multiplex example. In this example, the paper shows how a standard physical delay-Doppler scattering channel model can be approximated by the proposed state-space model. The simulations show that significant performance gains can be made by exploiting temporal, as well as diversity channel correlations. The paper argues that such time-recursive receivers offer some advantages over block processing schemes such as computational and memory requirement reductions and the easier incorporation of adaptivity in the receiver structures.Nguyen, V.K.; White, L.B.; Jaffrot, E.; Soamiadana, M.; Fijalkow, I

    Ultra wideband OFDM channel estimation through a wavelet based EM-MAP algorithm

    No full text
    International audienceUltra wideband (UWB) communications involve very sparse channels, since the bandwidth increase results in a better time resolution. This property is used here to propose an efficient algorithm jointly estimating the channel and the transmitted symbols. More precisely, this paper introduces an expectation-maximisation (EM) algorithm within a wavelet domain Bayesian framework for semi-blind channel estimation of multiband orthogonal frequency-division multiplexing (MB-OFDM) based UWB communications. A prior distribution is chosen for the wavelet coefficients of the unknown channel impulse response (CIR) in order to model a sparseness property of the wavelet representation. This prior yields, in maximum a posteriori (MAP) estimation, a thresholding rule within the EM algorithm. We particularly focus on reducing the number of estimated parameters by iteratively discarding 'insignificant' wavelet coefficients from the estimation process. Simulation results using UWB channels issued from both models and measurements show that under sparsity conditions, the proposed algorithm outperforms pilot based channel estimation in terms of mean square error (MSE) and bit error rate (BER). Moreover, the estimation accuracy is improved, while the computational complexity is reduced, when compared to traditional semi-blind methods. Copyright © 2008 John Wiley & Sons, Ltd

    Symbol by symbol reduced complexity highly selective OFDM channel estimation

    No full text
    In OFDM systems, receiving techniques are mainly sensitive to the employed channel estimation strategy. Channel modelling is a crucial point in deriving a channel estimation method. We address here a simple channel model taking into account physical characteristics of the channel. We also show that this simple model can lead to good performance in symbol-by-symbol reception schemes

    Wavelet-Based Semiblind Channel Estimation for Ultrawideband OFDM Systems

    No full text
    corecore